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Abstract
While primate visual cortex has typically been divided
into two processing streams, recent research suggests
that there may be at least three functionally distinct
streams, extending along the ventral, lateral, and pari-
etal surfaces of the brain. Here, we leveraged the Nat-
ural Scenes Dataset (Allen et al., 2022) to compare and
model responses across these proposed streams. We
show that cortical responses cluster by stream and re-
flect the hierarchical organization of cortex. We then
tested how accurately deep convolutional neural net-
works (DCNNs) trained on supervised object categoriza-
tion and action recognition objectives could predict re-
sponses in each stream. Given the differences in re-
sponses across streams and the prevailing view that only
the ventral stream serves object categorization, we were
surprised to find that these models fit ventral and lateral
responses equally well, though they were slightly worse
at predicting parietal responses. These findings suggest
that additional constraints are required for model predic-
tivity to match the functional organization of visual cor-
tex.
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The human visual system is thought to be organized into
processing streams: traditionally, this has been a ”what” vs.
”where”, ventral vs. dorsal 1 division (Ungerleider & Mishkin,
1982; Goodale & Milner, 1992), but more recently a third
pathway has been proposed, extending along lateral occipito-
temporal cortex, with hypothesized functions encompassing
multimodal processing (Weiner & Grill-Spector, 2013), action
recognition (Wurm & Caramazza, 2021), and social percep-
tion (Pitcher & Ungerleider, 2020). DCNNs trained on a su-
pervised object categorization objective have been shown to
be excellent predictive models of the ventral stream (Yamins
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Güçlü &
van Gerven, 2015), but it remains an open question whether
they uniquely explain responses in the ventral stream. More
recently, DCNNs trained for action recognition (Güçlü & van
Gerven, 2017) or trained to predict an agent’s self-motion
(Mineault, Bakhtiari, Richards, & Pack, 2021) have been
shown to predict responses in V3A/B (parietal), MT, and MST
(lateral), but neither work included a comparison to DCNNs
trained on object categorization. Here we sought to eluci-
date (1) empirically, the extent to which these three putative
streams contain different representations and (2) computa-
tionally, whether DCNNs thought to be models of the ventral
stream better explain ventral, lateral and/or parietal brain re-
sponses.

Methods
Data acquisition and processing in brief. We analyzed
a high-resolution fMRI dataset that sampled responses to

1We will refer to this stream as the parietal stream to avoid confusion with the lateral
stream.

Figure 1: (a) Definition of ROIs on a flat map of the fsaverage cortex. (b) 2nd-order RSM
depicting the noise-corrected similarity of distributed representations across subjects,
ROIs, and hemispheres. (c) Multidimensional scaling of (b). Colors: ROI; Symbols:
hemispheres; symbol size: subject. (d) Correlations among pairs of parcels between
and across streams.

thousands of natural images in 8 individuals (Natural Scenes
Dataset (NSD) (Allen et al., 2022)). We defined 7 regions
of interest (ROIs): an early visual cortex (EVC) ROI, as well
as intermediate and higher-level ROIs for each of the three
proposed streams (Fig 1a). We used a set of 515 images
shared across subjects for the representational similarity ma-
trix (RSM) analyses (Fig 1) and 6,234 to 10,000 images per
subject for modeling analyses (Fig 2). The noise ceiling (NC)
was estimated in each voxel as described in Allen et al. (2022);
data were thresholded to only include voxels with NC ≥ 20%
variance.

Comparing representations. For each individual and ROI,
we computed the similarity (Pearson’s r ) between distributed
responses across the ROI to all pairs of shared images, re-
sulting in a RSM from which we extract the flattened lower
triangle as a representation vector. Representation vectors
were correlated across all subject and ROI combinations (cor-
rected by the trial-to-trial reliability) to generate a 2nd-order
RSM (Fig 1b), which characterizes the similarity of represen-
tations across subjects and ROIs.

Models and fitting procedure. We tested 8 candidate DC-
NNs - 6 models trained on the 1000-way ImageNet object
categorization task: AlexNet (Krizhevsky, Sutskever, & Hin-
ton, 2012), VGG-16 (Simonyan & Zisserman, 2014), Cornet-S
(Kubilius et al., 2018), ResNet-18, ResNet-50, and ResNet-
101 (He, Zhang, Ren, & Sun, 2016); one untrained AlexNet;
and one action recognition network: SlowFast (Feichtenhofer,
Fan, Malik, & He, 2019), a dual-pathway network with a
3D ResNet-50 backbone trained on the Kinetics-400 video
dataset (Kay et al., 2017). We leveraged the power of the
NSD dataset to predict voxel-level responses by regressing
model features from the best-fitting layer onto individual voxel
responses using ridge regression. The NSD images were
preprocessed using the image transforms used on the vali-
dation set during model training and model features for these
stimuli were extracted from each layer of the models. As in
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Schrimpf et al. (2020), we first projected these features into a
lower dimensional space using a subsample of the ImageNet
validation images and retained the first 1000 PCs. Perfor-
mance was evaluated on a left-out test set (80/20 split) for
each subject separately. To evaluate the upper-bound model
performance given the shared variance across subjects, we
calculated subject-to-subject predictivity (leave-one-out sub-
ject cross-validation) using ridge regression.

Results

Empirical testing of representation structure. Compar-
ing representations across subject and ROI combinations (Fig
1b), we found that representations were similar across sub-
jects within each ROI, particularly in EVC and high-level ROIs,
illustrating that representations in these ROIs are consistent
across individuals. This data-driven analysis provides evi-
dence that there are indeed representational differences be-
tween these ROIs and recovers known features of the visual
system. For example, EVC representations were highly cor-
related across subjects within, but not across, hemispheres.
In contrast, representations in high-level ROIs were highly
correlated both within and across hemispheres, as expected
from the larger receptive field sizes in these regions that ex-
tend to the ipsilateral visual field. Visualizing this structure in
2D (Fig 1c) illustrates a rough hierarchical progression from
EVC ROIs in the top-right (gray), to mid-level ROIs (light col-
ors, middle), to high-level ROIs in the lower-left. Additionally,
there is a large-scale separation by stream for high-level ROIs,
rather than subject or hemisphere, with lateral high-level ROIs
(blue) separated and more superior from a tight ventral clus-
ter (magenta), which is in turn, largely distinct from the pari-
etal ROIs (green, though these show greater between sub-
ject variability). To further test whether each stream showed a
distinct representational structure, we parcellated cortex into
1000 equally spaced ROIs and then calculated the correla-
tion between each pair of parcels. Each comparison was
grouped based on whether both parcels were located within
the same stream or whether they were located in two differ-
ent streams, revealing significantly higher correlations within
than across streams for this three-stream organization (main
effect of within vs. across: p=4.19x10−7; Fig 1d; à la Haak
and Beckmann (2018)). The difference in parcel correlations
within vs. across streams did not simply reflect anatomi-
cal proximity, as the neighboring lateral and parietal streams
showed the greatest differentiation.

Computational modeling of visual streams. Next, we ex-
amined how well DCNNs predict voxel responses in each sub-
ject. As cann be seen for an example subject and network (Fig
2a), the best fitting layer for each voxel is consistent with the
hierarchical organization of visual cortex, with early DCNN lay-
ers providing the best fit for voxels within EVC and later layers
best fitting downstream voxels. Additionally, predictivity was
similar across models (mean corrected R2s between 0.32 and
0.69), reaching the subject-to-subject NC in EVC, which illus-
trates the power of DCNNs as predictive models of visual ac-

Figure 2: Best fitting DCNN layer (a) and noise-corrected R2 (b) for each voxel for ex-
ample subject 1, ResNet-18. (c) Comparison of model fits across candidate models &
ROIs. R2 values are normalized by the NC of each voxel such that 1.0 corresponds to
the intrinsic data NC. Each dot represents a subject. Shaded gray error bars: range of
subject-to-subject NC. (d) Comparison of ROIs as models of each other. White: within-
ROI (same as shaded gray bar in (c)); Gray and Black bars: ROI X’s prediction of ROI
Y’s responses.

tivity2. Overall, deep ResNets (ResNet-50 and ResNet-101)
outperformed other candidate models, though this difference
was small. Surprisingly, DCNNs trained on object catego-
rization were equally good predictors of lateral ROIs as they
were of ventral ROIs (Fig 2d), despite differences in cortical
responses across these ROIs (Fig 1d). However, these mod-
els were significantly worse at predicting parietal responses
(mean corrected R2 across subjects and object categoriza-
tion DCNNs for ventral: 0.56±0.04 SD, for parietal: 0.45±0.05;
p=1.39x10−5). Further, the action recognition trained network
was a worse predictor of all ROIs than a comparable object
categorization DCNN with the same architectural backbone
(ResNet-50), with no differences in this deficit between Slow-
Fast and ResNet-50 across streams. Both findings ran con-
trary to our predictions that DCNNs trained on object catego-
rization would predict ventral responses better than lateral or
parietal responses, and that lateral responses would instead
be better predicted by an action recognition network (as sug-
gested by Güçlü and van Gerven (2017)).

Conclusions

Given our findings that representations in visual cortex dif-
fer across the three streams, we were surprised that DCNNs
trained on object categorization are not only good at predicting
responses in the ventral stream but also in the other streams,
particularly lateral. These results suggest that additional con-
straints are needed - either on DCNNs as models of the brain
or on the model-to-brain mapping procedure - for models to
predict the across-stream differentiation that exists in cortex.
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